
ECE 204 Numerical methods : Course summary

Douglas Wilhelm Harder

April 2023

Issues with floating-point arithmetic

(i) it is not associative: x+ (y + z) need not equal (x+ y) + z

(ii) x+ y = x if y is sufficiently small

(iii) x− y loses precision if x is sufficiently close to y

To mitigate these issues with floating-point numbers:

• add numbers of the same sign from smallest to largest

• avoid adding large numbers onto smaller numbers if the significance of the
smaller numbers matters

• avoid subtracting numbers of approximately equal value

1 The seven tools:

Here we list the seven tools that will be used throughout this course, and each
time a tool is used, we will refer to it with the number in square parentheses; for
example, Newton’s method is derived using Taylor series [5] and uses iteration
[2].

1. Weighted averages

• A weighted average of n items x1, . . . , xn (scalars or vectors) is any
linear combination of these c1x1 + · · ·+ cnxn where c1 + · · · cn = 1.

• A convex combination of n items is any weighted average where all
coefficients ck ≥ 0 for all k = 1, . . . , n. For real numbers, any convex
combination of n real numbers must evaluate to a value between
min{x1, . . . , xn} and max{x1, . . . , xn}, inclusive.

• An average of n items is a weighted average where all coefficients are
equal: ck = 1

n for k = 1, . . . , n.

• If n items x1, . . . , xn approximate the same value x, then a weighted
average of those n items is not subject to issues with floating-point
arithmetic, and that weighted average continues to approximate x.

1

2. Iteration

• The fixed-point theorem says that if we are solving x = f(x) and we
start with an x0 and define xk+1 ← f(xk), if this sequence converges,
it converges to a solution of x = f(x).

• Approximating
√

(2) requires an average [1].

• Estimating a and b given samples from a uniform distribution sam-
pled from [a, b] used a weighted average [1] with some coefficients
being negative.

3. Linear algebra

• Using partial pivoting, we avoid adding a large multiple of one equa-
tion (row) onto equation, thus losing information about the second.

• We introduce the Jacobi method which rewrites Ax = b in the
form x = f(x) and then we iterate [2].

4. Interpolation

• We find interpolating polynomials using linear algebra [3]. Given n
distinct x-values, there is a unique polynomial of degree n − 1 that
passes through n points (x1, y1), . . . , (xn, yn).

• We introduce shifting and scaling that will be used to mitigate issues
with floating-point arithmetic. Shifting is necessary if the x-values
are large, and scaling applies best if the x-values are equally spaced.

5. Taylor series

• We replace the representation in first year

f(x) = f(x0) + f (1)(x0)(x− x0) +
1

2
f (2)(x0)(x− x0)

2 + · · ·

with the representation

f(x+ h) = f(x) + f (1)(x)h+
1

2
f (2)(x)h2 + · · ·

6. Bracketing

• We introduce bracketing by showing it is a numerical equivalent of
one algorithm already covered, the binary search, and under appro-
priate conditions, this can be modified to the interpolation search
(using interpolation [4]) makes convergence even faster.

7. Intermediate-value theorem

• In first year, the intermediate value theorem says that if f is contin-
uous and y lies between f(a) and (b) inclusive, then there is a point
x between a and b, inclusive, such that y = f(x).

2

• We observe that if x1 ≤ . . . ≤ xn are n points between a and b, in-
clusive, and f is a continuous function then any convex combination if
f(x1), . . . , f(xn) must be a value that lies between min{f(x1), . . . , f(xn)}
and max{f(x1), . . . , f(xn)}, and thus, there must be an x1 ≤ x ≤ xn

such that f(x) equals this convex combination, and this x also satis-
fies a ≤ x ≤ b.

2 Numerical algorithms and analysis

We will apply these tools to approximate solutions to four categories of problems:

A. evaluating an expression,

B. approximating a solution to an algebraic equation or system of algebraic
equations,

C. approximating a solution to an analytic equation or a system of analytic
equations, and

D. unconstrained optimization.

These four categories are described here:

A. Evaluating an expression We begin by evaluating an expression to a
numeric value. This includes evaluating a polynomial at a point, evaluat-
ing derivatives and integrals, and evaluating in the presence of noise.

a. We begin by introducing Horner’s rule for evaluating polynomials.
We can mitigate the effects of numeric arithmetic if the variable is
small and coefficients of the higher terms decreases.

b. We continue by estimating a value between given points in either
space

. . . , (xk−1, fk−1), (xk, fk), (xk+1, fk+1), . . .

or time
. . . , (tk−2, yk−2), (tk−1, yk−1), (tk, yk).

(a) Assuming the points in space xk are equally spaced and we have
values of the functions at points on both side of the interval on
which we’d like to approximate the function, shift and scale the
surrounding two points to − 1

2 ,
1
2 , or shift and scale the surround-

ing four points to − 3
2 ,−

1
2 ,

1
2 ,

3
2 , and use interpolating linear or

cubic polynomial [4], respectively.

(b) Assuming the points in time tk are equally spaced and we have
only the most recent point to the right of the interval on which
we’d like to approximate the function, shift and scale the most
recent three points to − 3

2 ,−
1
2 ,

1
2 , or shift and scale the most

recent four points to − 5
2 ,−

3
2 ,−

1
2 ,

1
2 , and use interpolating linear

or cubic polynomial [4], respectively.

3

(c) To approximate the derivative, we could use rise-over run on two
points, but the error is O(h) where h is the width of the interval
(the run).

c. Divided-difference formulas: We continue by estimating deriva-
tives at given points.

(a) Assuming the points in space xk are equally spaced and we have
values to the left and right of the point we’d like to find O(h2)
approximations of the first and second derivatives (so we have
values at xk − h, xk, xk + h), find the interpolating quadratic
polynomial [4], differentiate it once or twice, and then evaluate
that polynomial at xk to get the approximation. Error analysis
is done with Taylor series [5] and the intermediate-value theorem
[7] because the errors can be written as convex combinations.

(b) Assuming the points in time tk are equally spaced and we’d like
to find an O(h2) approximations of the first and second deriva-
tives, find an interpolating quadratic polynomial [4] through the
last three points, differentiate it and evaluate it at tk for the
derivative, or find an interpolating cubic polynomial [4] through
the last four points, differentiate it twice and evaluate it at tk for
the second derivative. Error analysis is done with Taylor series
[5].

d. We finish by estimating integrals between given points.

(a) For any integral,
∫ b

a
f(x)dx = f [a,b](b − a) where f [a,b] is the

average value of f on [a, b], so we will approximate the average
value of the function by evaluating the function at various points
and taking a weighted average [1] of those values; however, the
actual formulas will be found by taking interpolating polynomials
[4] between a number of points and integrating that interpolating
polynomial.

(b) Assuming the points in space xk are equally spaced and we
have values to the left and right of the interval we’d like to
approximate the integral from xk − h to xk, we find an inter-
polating linear polynomial [4] through the points xk − h and
xk or an interpolating cubic polynomial [4] through the points
xk − 2h, xk − h, xk, xk + h and integrate that from xk − h to xk.

(c) Alternatively, assuming we want to integrate from xk − h to
xk + h, we derive Simpson’s rule by finding the interpolating
quadratic polynomial [4] through the points xk − h, xk, xk + h
and integrate that from xk − h to xk + h.

(d) Assuming the points in time tk are equally spaced and we’d like
to approximate the integral from tk−h to tk, find an interpolating
quadratic polynomial [4] through the last three points, or find an
interpolating cubic polynomial [4] through the last four points,
and integrate that polynomial from tk − h to tk.

4

e. In the presence of noise, it is inappropriate to use interpolating poly-
nomials, so instead we use least-squares best-fitting polynomials.

(a) Recall that to find the best approximation of a targetN -dimensional
vector y given n linearly independent vectors v1, . . . ,vn where

n < N , let V = (v1 · · ·vn), solve V TV a = V Ty with linear
algebra [3] to get y ≈ a1v1 + · · ·+ anvn.

(b) First shift and scale themmost recent points to−m+1, . . . ,−1, 0,
find the least-squares best-fitting linear polynomial at + b or
quadratic polynomial at2 + bt + c and then evaluate, differen-
tiate or integrate that polynomial to get the necessary result.

B. Approximating a solution to an algebraic equation or system
of algebraic equations We continue approximating a solution to an
algebraic equation or a system of algebraic equations. For linear equations,
we use linear algebra [4], and for all other non-linear equations, we convert
the problem into a root-finding problem, either f(x) = 0 or f(x) = 0⃗.

a. It is trivial to solve a linear equation ax = b: x = − b
a .

b. To approximate a root of a non-linear function, we may proceed as
follows:

(a) Newton’s method: If x approximates a root, use the Taylor
series [5] to find a better approximation of the root. We then
iterate [2]. We deduce the error with the Taylor series.

(b) Bisection method: If f is continuous and a and b are such
that f(a) and f(b) have opposite signs, the intermediate-value
theorem [7] says that there is a root on [a, b], so this interval
brackets a root [6]. Select the midpoint m and update whichever
end-point has the same sign as f(m) to continue bracketing the
root. We then iterate [2].

(c) Bracketed secant method: Like the bisection method, we
brackets the root [6], but then we use an interpolating linear
polynomial [4] between (a, f(a)) and (b, f(b)), and find the root
m of that linear polynomial, and update whichever end-point
has the same sign as f(m) to continue bracketing the root. We
then iterate [2]. The formula for the root m is not subject to
subtractive cancellation.

(d) Secant method: Starting with two approximations to a root,
we find the next approximation by finding the interpolating lin-
ear polynomial [4] between the two. The root of this becomes
the next approximation, and we discard that point xk such that
|f(xk)| is largest. We then iterate [2]. Unlike the bracketed se-
cant method, the formula for the root is subject to subtractive
cancellation.

(e) Muller’s method: Starting with three approximations to a root
x0, x1 and x2 (the last being the best), we shift and find the in-
terpolating quadratic polynomial [4] between (x0 − x2, f(x0)),

5

(x1−x2, f(x1)) and (0, f(x2)) and we find the root of this inter-
polating polynomial using −2c

b±
√
b2−4ac

to mitigate the effects of

floating-point arithmetic. We then iterate [2].

(f) Inverse quadratic interpolating: Starting with three approx-
imations to a root x0, x1 and x2 (the last being the best), we find
the interpolating quadratic polynomial [4] between (f(x0), x0),
(f(x1), x1) and (f(x2), x2) and we find the constant coefficient
of this interpolating polynomial. If we are close to a root, all the
abscissa values are already small, so no shifting is required. We
then iterate [2].

c. We have already seen how to mitigate the effects of floating-point
arithmetic for solving a system of linear equations [3] using partial
pivoting. We also saw the Jacobi method. We then introduce two
additional techniques:

(a) Gauss-Seidel method: Given xk, instead of calculating xk+1,
instead we assign xk+1 ← xk and then update the entries one at
a time.

(b) Successive over-relaxation: Having found xk+1 using xk, we
use as the next approximation a weighted average [1] of these
two approximations xk+1 ← ωxk+1 + (1− ω)xk.

d. We approximate a solution to finding a root of a system of non-
linear expressions by converting it into a system of linear equations
and finding the simultaneous root using linear algebra [3].

(a) For Newton’s method, given an approximation x0, we find the
tangent plane/hyper-plane using the Jacobian J(f)(x0) and solve
J(f)(x0)∆x0 = −f(x0) and then x1 ← x0+∆x0 We then iterate
[2]. Like Newton’s method for a real-valued function of a real
variable, this formula is found using Taylor series [5].

C. Approximating a solution to an analytic equation or a system
of analytic equations: For ordinary-differential equations, We look at
both initial-value problems and boundary-value problems. For partial dif-
ferential equations, we look at the heat and wave equations, and Laplace’s
equation for a steady-state solution.

a. Given a 1st-order initial-value problem y(1)(t) = f(t, y(t)), and y(t0) =

y0, we want to find y(t0 + h) = y0 +
∫ t0+h

t0
y(1)(t)dt, so as before, we

rewrite this as y(t0 + h) = y0 + hy(1)[t0,t0+h], and then iterate [2].
Like integration, all formulas will use weighted averages [1] of sam-
ples of y(1)(t) to estimate this average value. The error analysis of
the composite rules is done with the intermediate-value theorem [7].

(a) Euler’s method: Approximate this value by f(t0, y0). This is a
consequence of Taylor series [5] and the error analysis also comes
from this.

6

(b) Heun’s method: Approximate this value by the average [1] of
s0 ← (t0, y0) and s1 ← f(t0 + h, y0 + hs0).

(c) 4th-order Runge-Kutta method: Approximate this value by
a weighted average [1] of s0 ← (t0, y0) and s1 ← f(t0+0.5h, y0+
0.5/2hs0), s2 ← f(t0 + 0.5h, y0 + 0.5/2hs1) and s3 ← f(t0 +
0.5h, y0 + 0.5/2hs2).

(d) Adaptive techniques use Taylor series [4] to allow one to approx-
imate the error of a worse approximation using a better approx-
imation. We discuss the Euler-Heun method and the Dormand-
Prince method.

(e) To find an approximation to a system of initial-value problems,
we simply use vector arithmetic.

(f) We use calculus to convert a higher-order initial value problem
or a system of higher-order initial-value problems into a system
of 1st-order initial-value problems.

b. Given a 2nd-order ordinary differential equation, we may have two
boundary values, which may either specified values (Dirichlet) or
slopes (Neumann).

(a) Shooting method: With Dirichlet conditions, we can convert
the boundary-value problem into an initial-value problem with
initial values u(a) = ua and u(1)(a) = s, and then let us(x) be
the approximation of the solution with the initial slope s. We
want us(b) = ub so we define us(b) − ub to be an expression in
s and we want to find a root of this expression. We then start
with two initial slopes s0 and s1 and we proceed by using the
secant method.

(b) Finite-difference method: Approximate a linear ordinary-
differential equation by a finite-difference equation by substitut-
ing the centered divided-difference formulas for the first and
second derivatives. By dividing the interval [a, b] into n sub-
intervals with h← b−a

n and xk ← a+ hk, we create a system of
n− 1 linear equations in n− 1 unknowns and use linear algebra
[3] to find an approximation.

c. For linear partial-differential equations such as the heat equation,
the wave equation and Laplace’s equation, we approximate partial-
differential equation by a finite-difference equation by substituting
the centered or forward divided-difference formulas for the vari-
ous partial derivatives.

(a) Heat equation: For the heat equation, we solve for uk,ℓ+1 and
then use the initial conditions and the boundary conditions to
approximate the uk,ℓ+1 for a given ℓ for all k = 1, . . . , n−1, then
finding the boundary values based on whether they are Dirichlet
or Neumann.

7

(b) Wave equation: As with the heat equation, we solve for uk,ℓ+1,
but this now depends on uk,ℓ−1, so when ℓ = 0, we must use a
second initial condition, the initial rate-of-change of the ampli-
tude of the wave. Everything else is the same.

(c) Laplace’s equation: In one dimension, the solution to Laplace’s
equation is a straight line between the boundary values, as appro-
priate. In higher dimensions, the finite-difference approximation
says the value at a point is the average of the values around it.
This creates a system of linear equations [3] which we then solve.

D. Unconstrained optimization: Given a real-valued function of either a
single variable f(x) or multiple variables f(x), we look at a number of
techniques for finding local minima.

a. For real-valued functions of a single variable f(x), we generalize root-
finding techniques:

(a) Step-by-step iteration: We move in the direction of a mini-
mum with a step size h until the next value is higher and then
continue to halve the step size. This is a naive bracketing tech-
nique [6].

(b) Newton’s method: We can find a root-finding technique such
as Newton’s method but apply it to the derivative f (1)(x) As
before, this uses Taylor series [5] and iteration [2].

(c) Golden-ratio search: A generalization of the bisection method,
we bracket the minimum [6] and then evaluate the function at
two intermediate points to reduce the width of the interval. We
then iterate [2].

(d) Successive parabolic interpolation: A generalization of the
secant method, with three approximations of the minimum, we
find an interpolating quadratic polynomial [4] and find the min-
imum of this polynomial. We then iterate [2].

b. For real-valued functions of multiple variables f(x), we may proceed
as follows:

(a) Hooke-Jeeves method: Approximate the direction of the gra-
dient and then step in that direction until a minimum in that
direction is found. Then iterate [2], possibly halving the step
size.

(b) Newton’s method: Find a simultaneous root of the gradient

∇⃗f(x) = 0⃗.

(c) Gradient descent: Find the gradient at a point ∇⃗f(x0) and
then convert the problem into one of one variable: minimize
f(x0 − s∇⃗f(x0))). Having found the minimum s0, let x1 ←
x0 + s0∇⃗f(x0)). Then iterate [2].

8

